2017-07

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

論理的な近似計算

今日は集積回路などの研究をされている先生とお話をさせて頂いた。
一つは自然数の平方根の四捨五入をスマートに求めることによって任意の精度でルート演算を行えないかという話。
もう一つは約半年間寝かせてあった(若干行き詰まっていた)独自の乗算回路についての話。

乗算回路については、小規模な回路としての発展を考えていたが、前者の近似計算の話とあいまって、任意精度の乗算器としての活路を見いだせるのではないかというアドバイスを戴いた。

☆近似計算について
 三角関数、対数関数、平方根などの近似値を求めることはコンピュータにおいて日常茶飯事の計算であるが、それらのほとんどはテイラー展開やニュートン法によって充分高い精度で計算してから上位の桁を拾う、という手法が一般的である。しかしこういったやり方は無駄が多いのでもっと効率的にできるだろうよ、と近頃考えているのである。

☆数の表現方法について
 そもそも、一般的なパソコンは浮動小数点数を利用しているけれど、この表現方法だと数の精度(有効桁数)が全く判らず情報が無駄になったり、また逆に精度が良い数も普通に保存することができないので、この方法を用い続けるのはいかがなものかと考えるのである。しかも、整数も基本は有限の数しか扱えないため、将来的には(システム上)無限の桁数の数を同等に扱えるべきだと思う次第。
スポンサーサイト

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

http://butchi.blog42.fc2.com/tb.php/24-c6849d98
この記事にトラックバックする(FC2ブログユーザー)

«  | HOME |  »

プロフィール

ぶっち

Author:ぶっち
面白法人に勤める男。

趣味: 数学、コンピュータ、CG鑑賞・制作、アカペラ(ベース、パーカッション)
自分をモノにたとえると、"次世代OS搭載の旧世代PC"
http://butchi.jp/

Twitter

最近の記事

カテゴリー

月別アーカイブ

最近のトラックバック

ブログ内検索

RSSフィード

ブロとも申請フォーム

この人とブロともになる

QRコード

QRコード

リンク

このブログをリンクに追加する

上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。